
ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

B.C.A.
101 54

UNIX & SHELL PROGRAMMING LAB
V - Semester

U
N

IX
 &

 S
H

E
L

L
 P

R
O

G
R

A
M

M
IN

G
 L

A
B

B

.C
.A

.

ALAGAPPA UNIVERSITY
(Accredited with ‘A+’ Grade by NAAC (with CGPA: 3.64) in the Third Cycle and

Graded as category - I University by MHRD-UGC)

(A State University Established by the Government of Tamilnadu)

KARAIKUDI – 630 003

DIRECTORATE OF DISTANCE EDUCATION

BACHELOR OF COMPUTER APPLICATIONS

Third Year – Fifth Semester

10154 – UNIX & SHELL PROGRAMMING LAB

Copy Right Reserved For Private Use only

Author :
Dr. K. Shankar

Assistant Professor

Department of Computer Science and Information Technology

Kalasalingam Academy of Research and Education

Anand Nagar, Krishnankoil-626126

Reviewer:

Mr. S. Balasubramanian

Assistant Professor in Computer Science

Directorate of Distance Education

Alagappa University

Karaikudi – 03.

“The Copyright shall be vested with Alagappa University”

All rights reserved. No part of this publication which is material protected by this copyright

notice may be reproduced or transmitted or utilized or stored in any form or by any means now
known or hereinafter invented, electronic, digital or mechanical, including photocopying,

scanning, recording or by any information storage or retrieval system, without prior written

permission from the Alagappa University, Karaikudi, Tamil Nadu.

SYLLABUS

BLOCK 1

1. Introduction: operating System, objective, History, Features of

UNIX

1-4

2. Kernel and Shell 5-6

3. Unix File System: File and Common Commands, Shell, more about

files, Directories, UNIX system, Basics of file directories

7-21

BLOCK 2

4. Permissions- Inodes-Directory hierarchy-Devices-the grep family-

Other filters

22-29

5. Stream editor sed - awk pattern scanning and processing language-files

and good filters.
30-39

6. Wild card characters 40-40

BLOCK 3

7.Unix commands with syntax: Syntax and unix commands 41-43

8.Unix shells: History of unix shells 44-45

9.Deciding on a shell 46-48

BLOCK 4

10 Shell Command files 49-50

 11. Bourne shell programming 51-57

12. Shell programming on files 58-61

BLOCK 5

13. Menu Driven File Handling 62-66

14. Menu Driven Shell Program 67-68

1

Introduction

NOTES

Self- Instructional Material

BLOCK 1

EX.NO: 1 INTRODUCTION

A computer system can be divided into 4 components:

 Hardware (CPU, memory, input/output devices, etc.), Operating

system,

 System programs (word processors, spread sheets, accounting

software‘s, compilers,)

 Application programs.

In 1960‘s definition of an operating system is ―software that controls the

hardware‖. However, today, due to microcode we need a better definition.

The operating system is viewed as the programs that make the hardware

useable. In brief, an operating system is the set of programs that controls a

computer. An Operating system is software that creates a relation between

the User, Software and Hardware. It is an interface between the all. All the

computers need basic software known as an Operating System (OS) to

function. The OS acts as an interface between the User, Application

Programs, Hardware and the System Peripherals. The OS is the first

software to be loaded when a computer starts up. The entire application

programs are loaded after the OS.

 Types of Operating System (Based on No. of user)

 Single User: If the single user Operating System is loaded in

computer‘s memory; the computer would be able to handle one user

at a time.

Ex: MS-DOS, MS-Win 95-98, Win-ME

 Multi user: If the multi-user Operating System is loaded in

computer‘s memory; the computer would be able to handle more

than one user at a time.

Ex: UNIX, Linux, XENIX

 Network: If the network Operating System is loaded in computer‘s

memory; the computer would be able to handle more than one

computer at time.

Ex: Novel Netware, Win-NT, Win-2000-2003

Objective

To understand the UNIX OS and its programming language from the

scratch. After going through this section, you should be able to:

 • Mention the features of UNIX;

 • Recognize, understand and make use of various UNIX commands;

 • Gain hands on experience of UNIX commands and shell programs;

 • Feel more confident about writing the shell scripts and shell programs;

 • Apply the concepts that have been covered in this manual,

2

Introduction

NOTES

Self- Instructional Material

 • Know the alternate ways of providing the solutions to the given practical

exercises and problems.

History of UNIX

Imagine computers as big as houses, even stadiums. While the sizes of

those computers posed substantial problems, there was one thing that made

this even worse: every computer had a different operating system. Software

was always customized to serve a specific purpose, and software for one

given system didn‘t run on another system. Being able to work with one

system didn‘t automatically mean that you could work with another. It was

difficult, both for the users and the system administrators. Technologically

the world was not quite that advanced, so they had to live with the size for

another decade. In 1969, a team of developers in the Bell Labs laboratories

started working on a solution for the software problem, to address these

compatibility issues. They developed a new operating system, which was

 Simple and elegant.

 Written in the C programming language instead of in assembly

code.

 Able to recycle code.

The Bell Labs developers named their project ―UNIX.‖ The code recycling

features were very important. Until then, all commercially available

computer systems were written in a code specifically developed for one

system. UNIX on the other hand needed only a small piece of that special

code, which is now commonly named the kernel. This kernel is the only

piece of code that needs to be adapted for every specific system and forms

the base of the UNIX system. The operating system and all other functions

were built around this kernel and written in a higher programming

language, C.

This language was especially developed for creating the UNIX system.

Using this new technique, it was much easier to develop an operating

system that could run on many different types of hardware. The software

vendors were quick to adapt, since they could sell ten times more software

almost effortlessly. Weird new situations came in existence: imagine for

instance computers from different vendors communicating in the same

network, or users working on different systems without the need for extra

education to use another computer. UNIX did a great deal to help users

become compatible with different systems. Throughout the next couple of

decades, the development of UNIX continued. More things became

possible to do and more hardware and software vendors added support for

UNIX to their products.

UNIX was initially found only in very large environments with mainframes

and minicomputers (note that a PC is a ―micro‖ computer). But smaller

computers were being developed, and by the end of the 80s, many people

had home computers. By that time, there were several versions of UNIX

3

Introduction

NOTES

Self- Instructional Material

available for the PC architecture, but none of them were truly free and

more important: they were all terribly slow, so most people ran MS DOS or

Windows 3.1 on their home PCs.

Linus Torvalds, a young man studying computer science at the University

of Helsinki, used the Minix, and when he felt too constrained by its

limitation, he started to code his own UNIX look like operating system.

From the start, it was Linus‘ goal to have a free system that was completely

compliant with the original UNIX. That is why he asked for POSIX

standards, POSIX still being the standard for UNIX.

In those days plug-and-play wasn‘t invented yet, but so many people were

interested in having a UNIX system of their own, that this was only a small

obstacle. New drivers became available for all kinds of new hardware, at a

continuously rising speed. Almost as soon as a new piece of hardware

became available, someone bought it and submitted it to the Linux test, as

the system was gradually being called, releasing more free code for an

ever-wider range of hardware. These coders didn‘t stop at their PCs; every

piece of hardware they could find was useful for Linux. Two years after

Linus‘ post, there were 12000 Linux users. The project, popular with

hobbyists, grew steadily, all the while staying within the bounds of the

POSIX standard. All the features of UNIX were added over the next couple

of years, resulting in the mature operating system Linux has become today.

Linux is a full UNIX clone, fit for use on workstations as well as on middle

range and high-end servers. Today, a lot of the important players in the

hardware and software market each have their team of Linux developers; at

your local dealers you can even buy preinstalled Linux systems with

official support–though there is still some hardware and software not

supported

What Is UNIX?

 UNIX is an operating system which was first developed in the

1960s, and has been under constant development ever since.

 It is a stable, multi-user, multi-tasking system for servers, desktops

and laptops.

 UNIX systems also have a graphical user interface (GUI) similar to

Microsoft Windows which provides an easy to use environment.

 Knowledge of UNIX is required for operations which aren't

covered by a graphical program, or for when there is no windows

interface available, for example, in a telnet session.

Types of UNIX

 There are many different versions of UNIX, although they share

common similarities. The most popular varieties of UNIX are Sun

Solaris, GNU/Linux, and MacOS X.

4

Introduction

NOTES

Self- Instructional Material

 The UNIX operating system is made up of three parts; the kernel,

the shell and the programs.

Features of UNIX OS
Multitasking

Multitasking is the capability of the operating system to perform

various tasks. i.e., A single user can perform various tasks.

 Multi-user capability

This allows several users to use the same computer to perform their

tasks.

 Security

Every user has a login name and a password. So, accessing another

user‘s data is impossible without permission

 Portability

UNIX is portable because it is written in a high level language ©.

So UXIX can be run on different computers.

 Communication

UNIX supports the following communications.

o Between the different terminals connected to the UNIX server.

o Between the users of one computer to the users of another

 Programming facility

UNIX is highly programmable; the UNIX shell programming

language has all the necessary ingredients like conditional and

control structures (Loops) and variables.

Structure of a UNIX file system

/lib library files

/dev Contains file that link hardware devices

/tmp temporary storage of files

 /home user home directories

5

 kernel and shell

NOTES

Self- Instructional Material

EX. NO: 2. KERNEL AND SHELL

Both the Shell and the Kernel are the Parts of this Operating System. These

Both Parts are used for performing any Operation on the System. When a

user gives his Command for Performing Any Operation, then the Request

Will goes to the Shell Parts, The Shell Parts is also called as the Interpreter

which translates the Human Program into the Machine Language and then

the Request will be transferred to the Kernel. So that Shell is just called as

the interpreter of the Commands this converts the Request of the User into

the Machine Language.

Kernel is also called as the heart of the Operating System and

every operation are performed by using the Kernel, When the Kernel

Receives the Request from the Shell then this will Process the Request and

Display the Results on the Screen.

The Various Operation performed by the Kernel Listed below:

 It Controls the State the Process Means it checks whether the

Process is running or Process is waiting for the Request of the user.

 Provides the Memory for the Processes those are Running on the

System Means Kernel Runs the Allocation and De-allocation

Process, First When we Request for the service then the Kernel will

Provides the Memory to the Process and after that he also Release

the Memory which is Given to a Process.

 The Kernel also Maintains a Time table for all the Processes those

are Running Means the Kernel also Prepare the Schedule Time

means this will provide the Time to various Process of the CPU and

the Kernel also Puts the Waiting and Suspended Jobs into the

different Memory Area.

 When a Kernel determines that the Logical Memory doesn‘t fit to

Store the Programs. Then he uses the Concept of the Physical

Memory which Will Stores the Programs into Temporary Manner.

Means the Physical Memory of the System can be used as

Temporary Memory.

 Kernel also maintains all the files those are Stored into the

Computer System and the Kernel Also Stores all the Files into the

System as no one can read or Write the Files without any

Permissions. So that the Kernel System also Provides us the

Facility to use the Passwords and also all the Files are Stored into

the Particular Manner.

6

kernel and shell

NOTES

Self- Instructional Material

The shell acts as an interface between the user and the kernel. When a user

logs in, the login program checks the username and password, and then

starts another program called the shell. The shell is a command line

interpreter (CLI). It interprets the commands the user types in and arranges

for them to be carried out. The commands are themselves programs: when

they terminate, the shell gives the user another prompt (% on our systems).

7

 Unix File System

NOTES

Self- Instructional Material

EX. NO: 3 UNIX FILE SYSTEM

The UNIX file system is a methodology for logically organizing and

storing large quantities of data such that the system is easy to manage.

A file can be informally defined as a collection of (typically related) data,

which can be logically viewed as a stream of bytes (i.e. characters). A file

is the smallest unit of storage in the UNIX file system.

By contrast, a file system consists of files, relationships to other files, as

well as the attributes of each file. File attributes are information relating to

the file, but do not include the data contained within a file. File attributes

for a generic operating system might include (but are not limited to):

 a file type (i.e. what kind of data is in the file)

 a file name (which may or may not include an extension)

 a physical file size

 a file owner

 file protection/privacy capability

 file time stamp (time and date created/modified)

Additionally, file systems provide tools which allow the manipulation of

files, provide a logical organization as well as provide services which map

the logical organization of files to physical devices.

From the beginner‘s perspective, the UNIX file system is essentially

composed of files and directories. Directories are special files that may

contain other files.

The UNIX file system has a hierarchical (or tree-like) structure with its

highest-level directory called root (denoted by /, pronounced slash).

Immediately below the root level directory are several subdirectories, most

of which contain system files. Below this can exist system files, application

files, and/or user data files. Similar to the concept of the process parent-

child relationship, all files on a UNIX system are related to one another.

That is, files also have a parent-child existence. Thus, all files (except one)

share a common parental link, the top-most file (i.e. /) being the exception.

Below is a diagram (slice) of a "typical" UNIX file system. As you can see,

the top-most directory is / (slashes), with the directories directly beneath

being system directories. Note that as UNIX implementations and vendors

vary, so will this file system hierarchy. However, the organization of most

file systems is similar.

8

 Unix File System

NOTES

Self- Instructional Material

While this diagram is not all inclusive, the following system files (i.e.

directories) are present in most UNIX filesystems:

 bin - short for binaries, this is the directory where many commonly

used executable commands reside

 dev - contains device specific files

 etc - contains system configuration files

 home - contains user directories and files

 lib - contains all library files

 mnt - contains device files related to mounted devices

 proc - contains files related to system processes

 root - the root users' home directory (note this is different than /)

 sbin - system binary files reside here. If there is no sbin directory on

your system, these files most likely reside in etc

 tmp - storage for temporary files which are periodically removed

from the filesystem

 usr - also contains executable commands

Common Commands

Touch: Create a new file or update its timestamp.

 Syntax: touch [OPTION]…[FILE]

 Example: Create empty files called ‗file1‘ and ‗file2‘

 $ touch file1 file2

Cat: Concatenate files and print to stdout.

 Syntax: cat [OPTION]…[FILE]

 Example: Create file1 with entered content

 $ cat > file1

 Hello

 ^D

cp: Copy files

 Syntax: cp [OPTION]source destination

 Example: Copies the contents from file1 to file2 and contents of

file1 is retained

 $ cp file1 file2

Mv: Move files or rename files

 Syntax: mv [OPTION]source destination

9

 Unix File System

NOTES

Self- Instructional Material

 Example: Create empty files called ‗file1‘ and ‗file2‘

 $ mv file1 file2

rm: Remove files and directories

 Syntax: rm [OPTION]…[FILE]

 Example: Delete file1

 $ rm file1

mkdir: Make directory

 Syntax: mkdir [OPTION] directory

 Example: Create directory called dir1

 $ mkdir dir1

 rmdir: Remove a directory

 Syntax: rmdir [OPTION] directory

 Example: Create empty files called ‗file1‘ and ‗file2‘

 $ rmdir dir1

 Cd: Change directory

 Syntax: cd [OPTION] directory

 Example: Change working directory to dir1

 $ cd dir1

pwd: Print the present working directory

 Syntax: pwd [OPTION]

 Example: Print ‗dir1‘ if a current working directory is dir1

 $ pwd

File and Directory Related commands

1. pwd

This command prints the current working directory

2. ls

This command displays the list of files in the current working

directory.

$ls –l Lists the files in the long format

$ls –t Lists in the order of last modification time

$ls –d Lists directory instead of contents

$ls -u Lists in order of last access time

3. cd

This command is used to change from the working directory to any

other directory specified.

$cd directoryname

4. cd..

This command is used to come out of the current working directory.

$cd.

5. mkdir

This command helps us to make a directory.

$mkdir directoryname

6. rmdir

10

 Unix File System

NOTES

Self- Instructional Material

This command is used to remove a directory specified in the

command line. It requires the specified directory to be empty before

removing it.

$rmdir directoryname

7. cat

This command helps us to list the contents of a file we specify.

$cat [option][file]

cat > filename – This is used to create a new file.

cat >>filename – This is used to append the contents of

the file

8. cp

This command helps us to create duplicate copies of ordinary files.

$cp source destination

9. mv

This command is used to move files.

$mv source destination

10. ln

This command is to establish an additional filename for the same

ordinary file.

$ln first name second name

11. rm

This command is used to delete one or more files from the

directory.

$rm [option] filename

$rm –i Asks the user if he wants to delete the file

mentioned.

$rm –r Recursively delete the entire contents of the

directory as well as the directory itself.

Process and status information commands

1) who

This command gives the details of who all have logged in to the

UNIX system currently.

$ who

2) who am i

This command tells us as to when we had logged in and the

system‘s name for the connection being used.

$who am i

3) date

This command displays the current date in different formats.

+%D mm/dd/yy +%w Day of the week

+%H Hr-00 to 23 +%a Abbr.Weekday

+%M Min-00 to 59 +%h Abbr.Month

11

 Unix File System

NOTES

Self- Instructional Material

+%S Sec-00 to 59 +%r Time in AM/PM

+%T HH:MM:SS +%y Last two digits of the year

4) echo

This command will display the text typed from the keyboard.

$echo

Eg : $echo Have a nice day

O/p : Have a nice day

Text related commands

1. head

This command displays the initial part of the file. By default it

displays first ten lines of the file.

$head [-count] [filename]

2. tail

This command displays the later part of the file. By default it

displays last ten lines of the file.

$tail [-count] [filename]

3. wc

This command is used to count the number of lines, words or

characters in a file.

$wc [-lwc] filename

4. find

The find command is used to locate files in a directory and in a

subdirectory.

The –name option

This lists out the specific files in all directories beginning from the

named directory. Wild cards can be used.

The –type option

This option is used to identify whether the name of files specified

are ordinary files or directory files. If the name is a directory then

use "-type d " and if it is a file then use ―-type f‖.

The –mtime option

This option will allow us to find that file which has been modified

before or after a specified time. The various options available are –

mtime n(on a particular day),-mtime +n(before a particular day),-

mtime –n(after a particular day)

The –exec option

This option is used to execute some commands on the files that are

found by the find command.

12

 Unix File System

NOTES

Self- Instructional Material

 File Permission commands

1. chmod

Changes the file/directory permission mode: $ chmod 777 file1

Gives full permission to owner, group and others

$ chmod o-w file1

Removes write permission for others.

 Useful Commands:

1. Exit - Ends your work on the UNIX system.

Shell

Shell programming is a group of commands grouped together under

single filename. After logging onto the system a prompt for input

appears which is generated by a Command String Interpreter

program called the shell. The shell interprets the input, takes

appropriate action, and finally prompts for more input. The shell

can be used either interactively – enter commands at the command

prompt, or as an interpreter to execute a shell script. Shell scripts

are dynamically interpreted, NOT compiled.

Common Shells.

 C-Shell - csh : The default on teaching systems Good for

interactive systems Inferior programmable features

 Bourne Shell - bsh or sh - also restricted shell - bsh : Sophisticated

pattern matching and file name substitution

 Korn Shell: Backwards compatible with Bourne Shell Regular

expression

Substitution emacs editing mode

 Thomas C-Shell - tcsh : Based on C-Shell Additional ability to use

emacs to edit the command line Word completion & spelling

correction Identifying your shel

Shell Variables:

Shell variables change during the execution of the program. The C

Shell offers a

Command "Set" to assign a value to a variable.

For example:

% set myname= Fred

% set myname = "Fred Bloggs"

% set age=20

A $ sign operator is used to recall the variable values.

For example:

% echo $myname will display Fred Bloggs on the screen

A @ sign can be used to assign the integer constant values.

For example:

%@myage=20

%@age1=10

13

 Unix File System

NOTES

Self- Instructional Material

%@age2=20

%@age=$age1+$age2

%echo $age

List variables

% set programming_languages= (C LISP)

% echo $programming _languages

C LISP

% set files=*.*

% set colors=(red blue green)

% echo $colors[2]

blue

% set colors=($colors yellow)/add to list

Local variables Local variables are in scope for the current shell. When a

script ends, they are no longer available; i.e., they go out of scope. Local

variables are set and assigned values.

Example

variable_name=value

name="John Doe"

x=5

Global variables Global variables are called environment variables. They

are set for the currently running shell and any process spawned from that

shell. They go out of scope when the script ends.

Example

VARIABLE_NAME=value

export VARIABLE_NAME

PATH=/bin:/usr/bin:.

export PATH

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 17

Extracting values from variables To extract the value from

variables, a dollar sign is used.

Example

echo $variable_name

echo $name

echo $PATH

Rules :

1. A variable name is any combination of alphabets, digits and an

underscore („-„);

2. No commas or blanks are allowed within a variable name.

3. The first character of a variable name must either be an alphabet

or an underscore.

4. Variables names should be of any reasonable length.

14

 Unix File System

NOTES

Self- Instructional Material

5. Variables name are case sensitive. That is, Name, NAME, name,

Name, are all different variables.

MORE ABOUT FILES

All files in the UNIX file system can be loosely categorized into 3 types,

specifically:

1. Ordinary files

2. Directory files

The first type of file listed above is an ordinary file, that is, a file with no

"special-ness". Ordinary files are comprised of streams of data (bytes)

stored on some physical device. Examples of ordinary files include simple

text files, application data files, files containing high-level source code,

executable text files, and binary image files. Note that unlike some other

OS implementations, files do not have to be binary Images to be executable

(more on this to come).

The second type of file listed above is a special file called a directory

(please don't call it a folder?). Directory files act as a container for other

files, of any category. Thus, we can have a directory file contained within a

directory file (this is commonly referred to as a subdirectory). Directory

files don't contain data in the user sense of data, they merely contain

references to the files contained within them.

It is perhaps noteworthy at this point to mention that any "file" that has

files directly below (contained within) it in the hierarchy must be a

directory, and any "file" that does not have files below it in the hierarchy

can be an ordinary file, or a directory, albeit empty.

Creating Files with cat

 There are many ways of creating a file

 One of the simplest is with the cat command:

$ cat > shopping_list

cucumber

bread

yoghurts

fish fingers

 Note the greater-than sign (>) — this is necessary to create the file

 The text typed is written to a file with the specified name

 Press Ctrl+D after a line-break to denote the end of the file

 The next shell prompt is displayed

 ls demonstrates the existence of the new file

Displaying Files’ Contents with cat

 There are many ways of viewing the contents of a file

15

 Unix File System

NOTES

Self- Instructional Material

 One of the simplest is with the cat command:

$ cat shopping_list

cucumber

bread

yoghurts

fish fingers

 Note that no greater-than sign is used

 The text in the file is displayed immediately:

Starting on the line after the command

Before the next shell prompt

Directories of UNIX System

Linux "folders" are called directories. The top-level, root directory is called

/. Your home directory is /home/username. From anywhere you can get

back there by typing simply cd The short-hand name for the directory you

happen to be in at any time is called "." and the directory in which the

current directory resides is called "..". Typing "cd." will move you to the

next higher level directory. Several useful commands for directories are

listed below.

Command Function Examples

Cd - Change directory cd, cd .., cd /home/catyp

Pwd- Print working directory pwd

Mkdir- Make a new subdirectory mkdir new directory

Rmdir- Remove a directory rmdir empty directory

ls - List files in a directory ls, ls –l

Files:

Files reside in directories. Use the ls command (or ls -l for more

information) to see all the files in a directory. Useful commands for

manipulating files include:

Command Function Examples

Mv Rename (move) a file mv oldname newname

cp Copy a file cp ol dname newname

 cp oldname dirname/

rm Delete (remove) a file rm filename

rm file1 file2 file3 rm -r dirname

cat Output the contents of a file cat filename to the screen

file identify the type of file file filename

head Display the first few lines head filename of a text file.

tail Display the last few lines tail filename of a text file.

chmod Change access permissions on files chmod mode filename

ln Creates symbolic link ln -s targetfile linkname

A directory is a collection of files and/or other directories. Because a

directory can contain other directories, we get a directory hierarchy. The

‗top level‘ of the hierarchy is the root directory. Files and directories can be

named by a path. Shows programs how to find their way to the file .The

16

 Unix File System

NOTES

Self- Instructional Material

root directory is referred to as /other directories are referred to by name,

and their names are separated by slashes (/). If a path refers to a directory it

can end in / usually an extra slash at the end of a path makes no difference

Examples of Absolute Paths

 An absolute path starts at the root of the directory hierarchy, and names

directories under it:

/etc/hostname

Meaning the file called hostname in the directory etc in the root directory.

 We can use ls to list files in a specific directory by specifying the

absolute path:

$ ls /usr/share/doc/

Current Directory

 Your shell has a current directory — the directory in which you are

currently working Commands like ls use the current directory if none is

specified. Use the pwd (print working directory) command to see what

your current directory is:

$ pwd /home/fred

Change the current directory with cd:

$ cd /mnt/cdrom

$ pwd /mnt/cdrom

 Use cd without specifying a path to get back to your home directory

Making and Deleting Directories

The mkdir command makes new, empty, directories. For example, to make

a directory for storing company accounts:

$ mkdir Accounts

To delete an empty directory, use rmdir:

$ rmdir OldAccounts

Use rm with the -r (recursive) option to delete directories and all the files

they contain:

$ rm -r OldAccounts

 Be careful — rm can be a dangerous tool if misused

Relative Paths

Paths don‘t have to start from the root directory. A path which doesn‘t start

with / is a relative path. It is relative to some other directory, usually the

current directory. For example, the following sets of directory changes both

end up in the same directory:

$ cd /usr/share/doc

$ cd /

$ cd usr

$ cd share/doc

17

 Unix File System

NOTES

Self- Instructional Material

 Relative paths specify files inside directories in the same way as absolute

ones

Special Dot Directories

 Every directory contains two special filenames which help making relative

paths:

The directory points to the parent directory. ls. will list the files in the

parent directory

For example, if we start from /home/fred:

$ cd ..

$ pwd

/home

$ cd ..

$ pwd

/

The special directory. points to the directory it is in. So./foo is the same file

as foo

Using Dot Directories in Paths

 The special .. and. directories can be used in paths just like any other

directory name:

$ cd ../other-dir/

Meaning ―the directory other-dir in the parent directory of the current

directory‖

 It is common to see .. used to ‗go back‘ several directories from the

current directory:

$ ls ../../../../far-away-directory/

The directory is most commonly used on its own, to mean ―the current

directory‖

Hidden Files

 The special. and.. directories don‘t show up when you do ls. They are

hidden files. Simple rule: files whose names start with. are considered

‗hidden‘. Make ls display all files, even the hidden ones, by giving it the -a

(all) option:

$ ls -a. .. .bashrc .profile report.doc

 Hidden files are often used for configuration files‘. Usually found in a

user‘s home directory

 You can still read hidden files — they just don‘t get listed by ls by default

Paths to Home Directories

 The symbol ˜ (tilde) is an abbreviation for your home directory. So for

user ‗fred‘, the following are equivalent:

$ cd /home/fred/documents/

$ cd ˜/documents/

The ˜ is expanded by the shell, so programs only see the complete path.

You can get the paths to other users‘ home directories using ˜, for example:

18

 Unix File System

NOTES

Self- Instructional Material

$ cat ˜alice/notes.txt

The following are all the same for user ‗fred‘:

$ cd

$ cd ˜

$ cd /home/fred

Basics of File

 A file is a place to store data: a possibly-empty sequence of bytes

 A directory is a collection of files and other directories

 Directories are organized in a hierarchy, with the root directory at

the top. The root directory is referred to as /

File Extensions

 It‘s common to put an extension, beginning with a dot, on the end

of a filename

 The extension can indicate the type of the file:

 .txt Text file

 .gif Graphics Interchange Format image

 .jpg Joint Photographic Experts Group image

 .mp3 MPEG-2 Layer 3 audio

 .gz Compressed file

 .tar Unix ‗tape archive‘ file

.tar.gz, .tgz Compressed archive file

 On UNIX, file extensions are just a convention. The kernel just treats them

as a normal part of the name. A few programs use extensions to determine

the type of a file

Filename Completion

 Modern shells help you type the names of files and directories by

completing partial names

 Type the start of the name (enough to make it unambiguous) and

press Tab

19

 Unix File System

NOTES

Self- Instructional Material

 For an ambiguous name (there are several possible completions),

the shell can list the options:

 For Bash, type Tab twice in succession

 For C shells, type Ctrl+D

 Both of these shells will automatically escape spaces and special

characters in the filenames

Copying Files with cp

o Syntax: cp [options] source-file destination-file

o Copy multiple files into a directory: cp files directory

o Common options:

o -f, force overwriting of destination files

o -i, interactively prompt before overwriting files

o -a, archive, copy the contents of directories recursively

Examples of cp

 Copy /etc/smb.conf to the current directory:

$ cp /etc/smb.conf .

 Create an identical copy of a directory called work, and call it work-

backup:

$ cp -a work work-backup

 Copy all the GIF and JPEG images in the current directory into images:

$ cp *.gif *.jpeg images/

Moving Files with mv

 mv can rename files or directories, or move them to different directories

 It is equivalent to copying and then deleting

But is usually much faster

 Options:

-f, forces overwrite, even if target already exists

-i, ask user interactively before overwriting files

 For example, to rename poetry.txt to poems.txt:

$ mv poetry.txt poems.txt

To move everything in the current directory somewhere else:

$ mv * ˜/old-stuff/

Deleting Files with rm

rm deletes (‗removes‘) the specified files

You must have written permission for the directory the file is in to remove

it

Use carefully if you are logged in as root!

Options:

-f, delete write-protected files without prompting

-i, interactive — ask the user before deleting files

-r, recursively delete files and directories

For example, clean out everything in /tmp, without prompting to delete

each file:

20

 Unix File System

NOTES

Self- Instructional Material

$ rm -rf /tmp/*

Identifying Types of Files

 The data in files comes in various different formats (executable

programs, text files, etc.)

 The file command will try to identify the type of a file:

 $ file /bin/bash/bin/bash: ELF 32-bit LSB executable, Intel 80386,

version 1, dynamically linked (uses shared libs), stripped

 It also provides extra information about some types of file

 Useful to find out whether a program is actually a script:

 $ file /usr/bin/zless /usr/bin/zless: Bourne shell script text

 If file doesn‘t know about a specific format, it will guess:

 $ file /etc/passwd/etc/passwd: ASCII text

Finding Files with locate

 The locate command is a simple and fast way to find files

 For example, to find files relating to the email program mutt:

 $ locate mutt

 The locate command searches a database of filenames

 The database needs to be updated regularly

 Usually this is done automatically with cron

 But locate will not find files created since the last update

 The -i option makes the search case-insensitive

 -r treats the pattern as a regular expression, rather than a simple

string

Directories and Renames

Programs under Linux are files, stored in directories like /bin and /usr/bin

Run them from the shell, simply by typing their name

Many programs take options, which are added after their name and

prefixed with -

For example, the -l option to ls gives more information, including the size

of files and the date they were last modified:

$ ls -l

drwxrwxr-x 2 fred users 4096 Mar 01 10:57 Accounts

-rw-rw-r-- 1 fred users 345 Mar 01 10:57

 notes.txt

-rw-r--r-- 1 fred users 3255 Mar 01 10:57

 report.txt

 Many programs accept filenames after the options

Specify multiple files by separating them with spaces

To copy the contents of a file into another file, use the cp command:

$ cp CV.pdf old-CV.pdf

21

 Unix File System

NOTES

Self- Instructional Material

 To rename a file use the mv (‗move‘) command:

$ mv commitee_minutes.txt committee_minutes.txt

Similar to using cp then rm

 For both commands, the existing name is specified as the first argument

and the new name as the second. If a file with the new name already exists,

it is overwritten

22

 Unix Permissions

NOTES

Self- Instructional Material

 BLOCK 2

 EX. NO:4 UNIX PERMISSIONS

Access to a file has three levels:

 Read permission – If authorized, the user can read the contents of

the file.

 Write permission – If authorized, the user can modify the file.

 Execute permission – If authorized, the user can execute the file as

a program.

Each file is associated with a set of identifiers that are used

to determine who can access the file:

 User ID (UID) – Specifies the user that owns the file. By default,

this is the creator of the file.

 Group ID (GID) – Specifies the user-group that the file belongs to.

Finally, there are three sets of access permissions associated

with each file:

 User permission – Specifies the level of access given to the user

matching the file‘s UID.

 Group permission – Specifies the level of access given to users in

groups matching the file‘s GID.

 Others permission – Specifies the level of access given to users

without a matching UID or GID.

Together, this scheme of access controls makes the Unix system extremely

secure while simultaneously providing the flexibility required of a multi-

user system.

The ls -l command can be used to view the permissions associated with

each of the files in the current folder.

INODE

Each file in UNIX has a unique number called as an inode. Using this

number the file information like user, group, ownership and access mode

information can be found. A files inode number can be found using the

following command:

Ls–i

If the inode number is known, the following command can be used to get

details of the file:

23

 Unix Permissions

NOTES

Self- Instructional Material

Ls –l

Directory Hierarchy

UNIX uses a hierarchical file system structure, much like an upside-down

tree, with root (/) at the base of the file system and all other directories

spreading from there.

A UNIX filesystem is a collection of files and directories that has the

following properties −

 It has a root directory (/) that contains other files and directories.

 Each file or directory is uniquely identified by its name, the

directory in which it resides, and a unique identifier, typically

called an inode.

 By convention, the root directory has an inode number of 2 and

the lost+found directory has an inode number of 3. Inode

numbers 0and 1 are not used. File inode numbers can be seen by

specifying the -i option to ls command.

 It is self-contained. There are no dependencies between one

filesystem and another.

The directories have specific purposes and generally hold the same types

of information for easily locating files. Following are the directories that

exist on the major versions of Unix −

Sr.No. Directory & Description

1 /
This is the root directory which should contain only the

directories needed at the top level of the file structure

2 /bin
This is where the executable files are located. These files are

available to all users

3 /dev

These are device drivers

24

 Unix Permissions

NOTES

Self- Instructional Material

4 /etc
Supervisor directory commands, configuration files, disk

configuration files, valid user lists, groups, ethernet, hosts,

where to send critical messages

5 /lib
Contains shared library files and sometimes other kernel-

related files

6 /boot
Contains files for booting the system

7 /home
Contains the home directory for users and other accounts

8 /mnt
Used to mount other temporary file systems, such

as cdrom and floppy for the CD-ROM drive and floppy

diskette drive, respectively

9 /proc
Contains all processes marked as a file by process number or

other information that is dynamic to the system

10 /tmp

Holds temporary files used between system boots

11 /usr
Used for miscellaneous purposes, and can be used by many

users. Includes administrative commands, shared files, library

files, and others

12 /var
Typically contains variable-length files such as log and print

files and any other type of file that may contain a variable

amount of data

13 /sbin
Contains binary (executable) files, usually for system

administration. For example, fdisk and ifconfig utlities

14 /kernel

Contains kernel files

25

 Unix Permissions

NOTES

Self- Instructional Material

Device File

This is another special file that is used to describe a physical device, such

as a printer or a portable drive. This file contains no data whatsoever; it

merely maps any data coming its way to the physical device it describes.

Device file types typically include: character device files, block device

files, UNIX domain sockets, named pipes and symbolic links. However,

not all of these file types may be present across various UNIX

implementations.

Grep Family

In the simplest terms, grep (global regular expression print) is a small

family of commands that search input files for a search string, and print the

lines that match it. Although this may not seem like a terribly useful

command at first, grep is considered one of the most useful commands in

any UNIX system. Grep is made up of three separate, yet connected

commands, grep, egrep, and fgrep, a sort of holy trinity of UNIX

commands. All three of the grep commands work the same way. Beginning

at the first line in the file, grep copies a line into a buffer, compares it

against the search string, and if the comparison passes, prints the line to the

screen. Grep will repeat this process until the file runs out of lines. Notice

that nowhere in this process does grep store lines, change lines, or search

only a part of a line.

The simplest possible example of grep is simply:

grep "boot" a file

In this example, grep would loop through every line of the file "a file" and

print out every line that contains the text "boot." Since grep is named the

"global regular expression print" it's not surprising that grep can also

search for regular expressions in addition to normal strings. Regular

expressions are searched for in the same way a normal string is. In fact, the

strings we entered before were just very simple regular expressions.

grep "e$" a file

26

 Unix Permissions

NOTES

Self- Instructional Material

While grep supports a handful of regular expression commands, it does not

support certain useful sequences such as the + and ? operators. If you

would like to use these, you will have to use extended grep (egrep). Egrep

is equivalent to grep -E, but as it is fairly common to want the extended

functionality, egrep is also its own separate command.

egrep "boot|boots"

Fgrep is the third member of the grep family. It stands for "fast grep" and

for good reason. Fgrep is faster than other grep commands because it does

not interpret regular expressions, it only searches for strings of literal

characters. Fgrep is equivalent to grep -F. If one fgreped for boot|boots,

rather than interpreting that as a search for either the word boot or the word

boots, frep would simply search for the literal string "boot|boots" in the

file. For instance, with normal grep the following command would search

for lines ending with the word "broken"

fgrep "broken$" a_file

However, we can see that with fgrep, it will return the line "broken$tuff"

because it is not interpreting the dollar sign, only the entire string as literal

characters.

Example

Now that we have skimmed over the basic functions of the commands in

the grep family, we can look at a few examples of more advanced

functionality. The following example is an example of grepping through

the output of another program rather than a file. This particular example

will print out the files that find returns that contain the text "hello

find | grep "hello"

Normally, grep does not have a way to search through portions of files, but

when the file is first processed by another program, this is possible. This

example performs a grep on the last 8 lines of a file

tail -n8 a file | grep "boo"

By using the exec switch with the find command, we can find files that

contain the search string. The following will search for the string "boo" in

every directory below the current directory

find . -exec grep "boo" {} \;

grep is the only command of the three that supports back references and

saving. The following uses back references to find lines that contain two of

the same lowercase letter in succession.

grep "\([a-z]\)\1" a file

27

 Unix Permissions

NOTES

Self- Instructional Material

Other Filters

A filter is a program that takes input from the standard input file, process

and sends its output to the standard output file. The filters can be used in an

efficient way. The following are some of the filters.

SORT: This command is used to sort the data‘s in some order.

Syntax: $sort<filename>

n

-r

Reverses the order of sort. Sorts numerically (example: 10 will sort after

2), ignores blanks and tabs.

-f

Sorts upper and lowercase together.

+x

Ignores first x fields when sorting

HEAD: It is used to display the top ten lines of file.

Syntax: $head<filename>

TAIL: This command is used to display the last ten lines of file.

Syntax: $tail<filename>

PAGE: This command shows the page by page a screen full of information

is displayed after

which the page command displays a prompt and passes for the user to

strike the enter key to

continue scrolling.

Syntax: $ls –a\p

MORE: It also displays the file page by page. To continue scrolling with

more command ,

press the space bar key.

Syntax: $more<filename>

GREP: This command is used to search and print the specified patterns

from the file.

Syntax: $grep [option] pattern <filename>

The pg and more Commands

A long output can normally be zipped by you on the screen, but if you run

text through more or use the pg command as a filter; the display stops once

the screen is full of text. Let's assume that you have a long directory listing

Stream Editor

sed is a stream editor. A stream editor is used to perform basic text

transformations on an input stream (a file or input from a pipeline). While

in some ways similar to an editor which permits scripted edits (such

as ed), sed works by making only one pass over the input(s), and is

consequently more efficient. But it is sed‘s ability to filter text in a pipeline

which particularly distinguishes it from other types of editors.

28

 Unix Permissions

NOTES

Self- Instructional Material

sed commands

The following commands are supported in GNU sed. Some are standard

POSIX commands, while other are GNU extensions. Details and examples

for each command are in the following sections. (Mnemonics) are shown in

parentheses.

a\

text

Append text after a line.

a text

Append text after a line (alternative syntax).

b label

Branch unconditionally to label. The label may be omitted, in which

case the next cycle is started.

c\

text

Replace (change) lines with text.

c text

Replace (change) lines with text (alternative syntax).

d

Delete the pattern space; immediately start next cycle.

D

If pattern space contains newlines, delete text in the pattern space up

to the first newline, and restart cycle with the resultant pattern space,

without reading a new line of input.

If pattern space contains no newline, start a normal new cycle as if

the d command was issued.

e

Executes the command that is found in pattern space and replaces the

pattern space with the output; a trailing newline is suppressed.

e command

Executes command and sends its output to the output stream. The

command can run across multiple lines, all but the last ending with a

back-slash.

F

(filename) Print the file name of the current input file (with a trailing

newline).

g

Replace the contents of the pattern space with the contents of the hold

space.

G

29

 Unix Permissions

NOTES

Self- Instructional Material

Append a newline to the contents of the pattern space, and then

append the contents of the hold space to that of the pattern space.

h

(hold) Replace the contents of the hold space with the contents of the

pattern space.

H

Append a newline to the contents of the hold space, and then append

the contents of the pattern space to that of the hold space.

i\

text

insert text before a line.

30

Awk Pattern Scanning And

Processing Language

NOTES

Self- Instructional Material

EX. NO: 5 AWK PATTERN

SCANNING AND PROCESSING

LANGUAGE
Awk is a scripting language used for manipulating data and generating

reports. The awk command programming language requires no compiling,

and allows the user to use variables, numeric functions, string functions,

and logical operators.

Awk is a utility that enables a programmer to write tiny but effective

programs in the form of statements that define text patterns that are to be

searched for in each line of a document and the action that is to be taken

when a match is found within a line. Awk is mostly used for pattern

scanning and processing. It searches one or more files to see if they contain

lines that matches with the specified patterns and then performs the

associated actions.

Awk is abbreviated from the names of the developers – Aho, Weinberger,

and Kernighan.

Program Structure

The basic operation of awk is to scan a set of input lines one after another,

searching for lines that match any of a set of patterns or conditions that the

user has specified. For each pattern, an action can be specified; this action

will be performed on each line that matches the pattern. Accordingly, an

awk program is a sequence of pattern-action statements of the form

pattern { action }

pattern { action }

...

The third program in the abstract,

$1 == "address" {print $2, $3 } is a typical example, consisting of one

pattern-action statement. Each line of input is matched against each of the

patterns in turn. For each pattern that matches, the associated action (which

may involve multiple steps) is executed. Then the next line is read and the

matching starts over. This process typically continues until all the input has

been read. Either the pattern or the action in a pattern-action statement may

be omitted. If there is no action with a pattern, as in

$1 == "name" the matching line is printed. If there is no pattern with an

action, as in {print $1, $2} then the action is performed for every input

line. Since patterns and actions are both optional, actions are enclosed in

braces to distinguish them from patterns.

Usage

There are two ways to run an awk program. You can type the command

awk ‘pattern-action statements‘ optional list of input files to execute the

31

Awk Pattern Scanning and

Processing Language

NOTES

Self- Instructional Material

pattern-action statements on the set of named input files. For example, you

could say awk ‘ { print $1, $2 }‘ data1 data2

If no files are mentioned on the command line, the awk interpreter will

read the standard input. Notice that the pattern-action statements are

enclosed in single quotes. This protects characters like $ from being

interpreted by the shell and also allows the program to be longer than one

line. The arrangement above is convenient when the awk program is short

(a few lines). If the program is long, it is often more convenient to put it

into a separate file, say my program, and use the -f option to fetch it awk -f

my program optional list of input files. Any filename can be used in place

of my program

Fields

Awk normally reads its input one line at a time; it splits each line into a

sequence of fields, where, by default, a field is a string of non-blank, non-

tab characters. As input for many of the awk programs in this manual, we

will use the following file, countries. Each line contains the name of a

country, its area in thousands of square miles, its population in millions,

and the continent where it is, for the ten largest countries in the world.

(Data are from 1978; the U.S.S.R. has been arbitrarily placed in Asia.)

USSR 8650 262 Asia

Canada 3852 24 North America

China 3692 866 Asia

USA 3 615 219 North America

Brazil 3286 116 South America

Australia 2968 14 Australia

India 1269 637 Asia

Argentina 1072 26 South America

Sudan 968 19 Africa

Algeria 920 18 Africa

The wide space between fields is a tab in the original input; a single blank

separates North and South from America. This file is typical of the kind of

data that awk is good at processing a mixture of words and numbers

separated into fields by blanks and tabs. The number of fields in a line is

determined by the field separator. Fields are normally separated by

sequences of blanks and/or tabs, in which case the first line of countries

would have 4 fields, the second 5, and so on. It‘s possible to set the field

separator to just tab, so each line would have 4 fields, matching the

meaning of the data; we‘ll show how to do this shortly. For the time being,

we‘ll use the default: fields separated by blanks and/or tabs.

The first field within a line is called $1, the second $2, and so forth. The

entire line is called $0.

32

Awk Pattern Scanning And

Processing Language

NOTES

Self- Instructional Material

Printing

If the pattern in a pattern-action statement is missing, the action is executed

for all input lines. The simplest action is to print each line; this can be

accomplished by the awk program consisting of a single print statement:

{ print } (P.1)

so the command

awk ‘{ print }‘ countries

prints each line of countries, thus copying the file to the standard output. In

the remainder of this paper, we shall only show awk programs, without the

command line that invokes them. Each complete program is identified by

(P.n) in the right margin; in each case, the program can be run either by

enclosing it in quotes as the first argument of the awk command as shown

above, or by putting it in a file and invoking awk with the -f flag, as

discussed in Section 1.2. In an example, if no input is mentioned, it is

assumed to be the file countries.

The print statement can be used to print parts of a record; for instance, the

program { print $1, $3 } prints the first and third fields of each input line.

Thus awk‘ { print $1, $3 }‘ countries.

Built-In Variables

Besides reading the input and splitting it into fields, awk counts the number

of lines read and the number of fields within the current line; you can use

these counts in your awk programs. The variable NR is the number of the

current input line, and NF is the number of fields. So, the program {print

NR, NF} prints the number of each line and how many fields it has, while

{print NR, $0} prints each line preceded by its line number.

Simple Patterns

You can select specific lines for printing or other processing with simple

patterns. For example, the operators == tests for equality. To print the lines

for which the fourth field equals the string Asia we can use the program

consisting of the single pattern:

$4 == "Asia" (P.6)

With the file countries as input, this program yields

USSR 8650 262 Asia

China 3692 866 Asia

India 1269 637 Asia

The complete set of comparisons is >, >=, <, <=, == (equal to) and!= (not

equal to). These comparisons can be used to test both numbers and strings.

For example, suppose we want to print only countries with more than 100

million populations. The program

$3 > 100 is all that is needed (remember that the third field is the

population in millions); it prints all lines in which the third field exceeds

100.You can also use patterns called ‗‗regular expressions‘‘ to select lines.

The simplest form of a regular expression is a string of characters enclosed

in slashes:

/US/

33

Awk Pattern Scanning and

Processing Language

NOTES

Self- Instructional Material

This program prints each line that contains the (adjacent) letters US

anywhere; with file countries as input, it prints

USSR 8650 262 Asia

USA 3615 219 North America

We will have a lot more to say about regular expressions in §2.4.

There are two special patterns, BEGIN and END, that ‗‗match‘‘ before the

first input line has been read and after the last input line has been

processed. This program uses BEGIN to print a title:

BEGIN {print "Countries of Asia:"}

/Asia/ {print " ", $1} The output is

Countries of Asia:

USSR

China

India

Patterns

In a pattern-action statement, the pattern is an expression that selects the

input lines for which the associated action is to be executed. This section

describes the kinds of expressions that may be used as patterns.

BEGIN and END

The special pattern BEGIN matches before the first input record is read, so

any statements in the action part of a BEGIN are done once before awk

starts to read its first input file. The pattern END matches the end of the

input, after the last file has been processed. BEGIN and END provide a

way to gain control for initialization and wrap up.

The field separator is stored in a built-in variable called FS. Although FS

can be reset at any time, usually the only sensible place is in a BEGIN

section, before any input has been read. For example, the following awk

program uses BEGIN to set the field separator to tab (\t) and to put column

headings on the output. The second printf statement, which is executed for

each input line, formats the output into a table, neatly aligned under the

column headings.

The END action prints the totals.

BEGIN {FS = "\t"

printf "%10s %6s %5s %s\n",

"COUNTRY", "AREA", "POP", "CONTINENT"}

{printf "%10s %6d %5d %s\n", $1, $2, $3, $4

area = area + $2; pop = pop + $3}

END {printf "\n%10s %6d %5d\n", "TOTAL", area, pop} (P.20)

With the file countries as input, produces

COUNTRY AREA POP CONTINENT

USSR 8650 262 Asia

Canada 3852 24 North America

34

Awk Pattern Scanning And

Processing Language

NOTES

Self- Instructional Material

China 3692 866 Asia

USA 3615 219 North America

Brazil 3286 116 South America

Australia 2968 14 Australia

India 1269 637 Asia

Argentina 1072 26 South America

Sudan 968 19 Africa

Algeria 920 18 Africa

TOTAL 30292 2201

Combinations of Patterns

A compound pattern combines simpler patterns with parentheses and the

logical operator‘s || (or), && (and)! (Not). For example, suppose we wish

to print all countries in Asia with a population of more than 500 million.

The following program does this by selecting all lines in which the fourth

field is Asia and the third field exceeds 500:

$4 == "Asia" && $3 > 500 (P.32)

The program

$4 == "Asia" || $4 == "Africa" (P.33)

selects lines with Asia or Africa as the fourth field. Another way to write

the latter query is to use a regular expression with the alternation operator |:

$4 ~ /^(Asia|Africa)$/ (P.34)

The negation operator! has the highest precedence, then &&, and finally ||.

The operators && and || evaluate their operands from left to right;

evaluation stops as soon as truth or falsehood is determined.

Pattern Ranges

A pattern range consists of two patterns separated by a comma, as in pat 1,

pat 2 {...} In this case, the action is performed for each line between an

occurrence of pat 1 and the next occurrence of pat 2 (inclusive). As an

example, the pattern

- 10 -

/Canada/, /Brazil/ (P.35)

Matches lines starting with the first line that contains Canada up through

the next occurrence of Brazil:

Canada 3852 24 North America

China 3692 866 Asia

USA 3615 219 North America

Brazil 3286 116 South America

Similarly, since FNR is the number of the current record in the current

input file, the program FNR == 1, FNR == 5 {print FILENAME, $0 }

prints the first five records of each input file with the name of the current

input file prepended.

35

Awk Pattern Scanning and

Processing Language

NOTES

Self- Instructional Material

1. AWK Operations:
(a) Scans a file line by line

(b) Splits each input line into fields

(c) Compares input line/fields to pattern

(d) Performs action(s) on matched lines

2. Useful For:
(a) Transform data files

(b) Produce formatted reports

3. Programming Constructs:
(a) Format output lines

(b) Arithmetic and string operations

(c) Conditionals and loops

Files and good Filters

Unix provides a number of powerful commands to process texts in

different ways. These text processing commands are often implemented as

filters. Filters are commands that always read their input from ‗stdin‘ and

write their output to ‗stdout‘. Users can use file redirection and ‗pipes‘ to

setup ‗stdin‘ and ‗stdout‘ as per their need. Pipes are used to direct the

‗stdout‘ stream of one command to the ‗stdin‘ stream of the next command.

Some standard filter commands are described below. These commands

may also take an input file as a parameter, but by default when the file is

not specified, they operate as filter command.

Working with Text Files

Unix-like systems are designed to manipulate text very well. The same

techniques can be used with plain text, or text-based formats Most Unix

configuration files are plain text

Text is usually in the ASCII character set Non-English text might use the

ISO-8859 character sets Unicode is better, but unfortunately many Linux

command-line utilities don‘t (directly) support it yet. Lines of Text files are

naturally divided into lines. In Linux a line ends in a line feed character 10,

hexadecimal 0x0A, Other operating systems use different combinations

Windows and DOS use a carriage return followed by a line feed Macintosh

systems use only a carriage return Programs are available to convert

between the various formats.

Filtering Text and Piping

The UNIX philosophy: use small programs, and link them together as

needed

Each tool should be good at one specific job

Join programs together with pipes

Indicated with the pipe character: |

The first program prints text to its standard output

That gets fed into the second program‘s standard input

For example, to connect the output of echo to the input of wc:

36

Awk Pattern Scanning And

Processing Language

NOTES

Self- Instructional Material

$ echo "count these words, boy" | wc

Displaying Files with less

If a file is too long to fit in the terminal, display it with less:

$ less README

less also makes it easy to clear the terminal of other things, so is useful

even for small files. Often used on the end of a pipe line, especially when it

is not known how long the output will be:

$ wc *.txt | less

Doesn‘t choke on strange characters, so it won‘t mess up your terminal

(unlike cat). Counting Words and Lines with wc

wc counts characters, words and lines in a file

 If used with multiple files, outputs counts for each file, and a combined

total

Options:

-c output character count

-l output line count

-w output word count

Default is -clw

 Examples: display word count for essay.txt:

$ wc -w essay.txt

 Display the total number of lines in several text files:

$ wc -l *.txt

Sorting Lines of Text with sort

 The sort filter reads lines of text and prints them sorted into order

 For example, to sort a list of words into dictionary order:

$ sort words > sorted-words

 The -f option makes the sorting case-insensitive

 The -n option sorts numerically, rather than lexicographically

Removing Duplicate Lines with unique

Use unique to find unique lines in a file

Removes consecutive duplicate lines

Usually give it sorted input, to remove all duplicates

 Example: find out how many unique words are in a dictionary:

$ sort /usr/dict/words | uniq | wc -w

 sort has a -u option to do this, without using a separate program:

$ sort -u /usr/dict/words | wc -w

 sort | uniq can do more than sort -u, though:

uniq -c counts how many times each line appeared

uniq -u prints only unique lines

uniq -d prints only duplicated lines

Selecting Parts of Lines with cut

Used to select columns or fields from each line of input

37

Awk Pattern Scanning and

Processing Language

NOTES

Self- Instructional Material

Select a range of

Characters, with -c

Fields, with -f

Field separator specified with -d (defaults to tab)

A range is written as start and end position: e.g., 3-5

Either can be omitted

The first character or field is numbered 1, not 0

Example: select usernames of logged in users:

$ who | cut -d" " -f1 | sort -u

Expanding Tabs to Spaces with expand

Used to replace tabs with spaces in files

Tab size (maximum number of spaces for each tab) can be set with -t

number

Default tab size is 8

To only change tabs at the beginning of lines, use -i

Example: change all tabs in foo.txt to three spaces, display it to the screen:

$ expand -t 3 foo.txt

$ expand -3 foo.txt

Using fmt to Format Text Files

 Arranges words nicely into lines of consistent length

 Use -u to convert to uniform spacing

 One space between words, two between sentences

Use -w width to set the maximum line width in characters

Defaults to 75

Example: change the line length of notes.txt to a maximum of 70

characters, and display it on the screen:

$ fmt -w 70 notes.txt | less

Reading the Start of a File with head

 Prints the top of its input, and discards the rest

 Set the number of lines to print with -n lines or -lines

 Defaults to ten lines

 View the headers of a HTML document called homepage.html:

 $ head homepage.html

 Print the first line of a text file (two alternatives):

$ head -n 1 notes.txt

$ head -1 notes.txt

Reading the End of a File with tail

Similar to head, but prints lines at the end of a file

The -f option watches the file forever

Continually updates the display as new entries are appended to the end of

the file

Kill it with Ctrl+C

The option -n is the same as in head (number of lines to print)

38

Awk Pattern Scanning And

Processing Language

NOTES

Self- Instructional Material

Example: monitor HTTP requests on a webserver:

$ tail -f /var/log/httpd/access_log

Numbering Lines of a File with nl or cat

Display the input with line numbers against each line

 There are options to finely control the formatting

 By default, blank lines aren‘t numbered

The option -ba numbers every line

cat -n also numbers lines, including blank ones

Dumping Bytes of Binary Data with od

Prints the numeric values of the bytes in a file

Useful for studying files with non-text characters

By default, prints two-byte words in octal

Specify an alternative with the -t option

Give a letter to indicate base: o for octal, x for hexadecimal, u for unsigned

decimal, etc.

Can be followed by the number of bytes per word

Add z to show ASCII equivalents alongside the numbers

A useful format is given by od -t x1z — hexadecimal, one byte words, with

ASCII

Alternatives to od include xxd and hexdump

Paginating Text Files with pr

Convert a text file into paginated text, with headers and page fills

Rarely useful for modern printers

Options:

-d double spaced output

-h header change from the default header to header

-l lines change the default lines on a page from 66 to lines

-o width set (‗offset‘) the left margin to width

 Example:

$ pr -h "My Thesis" thesis.txt | lpr

Dividing Files into Chunks with split

Splits files into equal-sized segments

Syntax: split [options] [input] [output-prefix]

Use -l n to split a file into n-line chunks

Use -b n to split into chunks of n bytes each

Output files are named using the specified output name with aa, ab, ac, etc.,

added to the end of the prefix

Example: Split essay.txt into 30-line files, and save the output to files

short_aa, short_ab, etc:

$ split -l 30 essay.txt short_

39

Awk Pattern Scanning and

Processing Language

NOTES

Self- Instructional Material

Using split to Span Disks

If a file is too big to fit on a single floppy, Zip or CD-ROM disk, it can be

split into small enough chunks

Use the -b option, and with the k and m suffixes to give the chunk size in

kilobytes or megabytes

For example, to split the file database.tar.gz into pieces small enough to fit

on Zip disks:

$ split -b 90m database.tar.gz zip-

Use cat to put the pieces back together:

$ cat zip-* > database.tar.gz

Reversing Files with tac

Similar to cat, but in reverse

Prints the last line of the input first, the penultimate line second, and so on

Example: show a list of logins and logouts, but with the most recent events

at the end:

$ last | tac

Translating Sets of Characters with tr

tr translates one set of characters to another

Usage: tr start-set end-set

Replaces all characters in start-set with the corresponding characters in

end-set

Cannot accept a file as an argument, but uses the standard input and output

Options:

-d deletes characters in start-set instead of translating them

-s replaces sequences of identical characters with just one (squeezes them)

tr Examples

Replace all uppercase characters in input-file with lowercase characters

(two alternatives):

$ cat input-file | tr A-Z a-z

$ tr A-Z a-z < input-file

Delete all occurrences of z in story.txt:

$ cat story.txt | tr -d z

Run together each sequence of repeated f characters in lullaby.txt to with

just one f:

$ tr -s f < lullaby.txt

40

Wildcard Characters

NOTES

Self- Instructional Material

EX NO: 6 WILDCARD CHARACTERS

Wildcards (also referred to as meta characters) are symbols or special

characters that represent other characters. You can use them with any

command such as ls command or rm command to list or remove files

matching a given criteria, receptively.

These wildcards are interpreted by the shell and the results are returned to

the command you run. There are three main wildcards in UNIX:

 An asterisk (*) – matches one or more occurrences of any character,

including no character.

 Question mark (?) – represents or matches a single occurrence of any

character.

 Bracketed characters ([]) – matches any occurrence of character

enclosed in the square brackets. It is possible to use different types of

characters (alphanumeric characters): numbers, letters, other special

characters etc.

https://www.tecmint.com/tag/linux-ls-command/

41

Basic Unix Commands

NOTES

Self- Instructional Material

BLOCK 3

EX. NO: 7 BASIC UNIX COMMANDS

File and Directory Related commands

pwd

This command prints the current working directory

ls

This command displays the list of files in the current working

directory.

$ls –l Lists the files in the long format

$ls –t Lists in the order of last modification time

$ls –d Lists directory instead of contents

$ls -u Lists in order of last access time

cd

This command is used to change from the working directory to any

other directory specified.

$cd directoryname

 cd..

This command is used to come out of the current working directory.

$cd ..

mkdir

This command helps us to make a directory.

$mkdir directoryname

rmdir

This command is used to remove a directory specified in the

command line. It requires the specified directory to be empty before

removing it.

$rmdir directoryname

cat

This command helps us to list the contents of a file we specify.

$cat [option][file]

cat > filename – This is used to create a new file.

cat >>filename – This is used to append the contents of

the file

cp

This command helps us to create duplicate copies of ordinary files.

$cp source destination

mv

This command is used to move files.

$mv source destination

ln

This command is to establish an additional filename for the same

ordinary file.

$ln firstname secondname

42

Basic Unix Commands

NOTES

Self- Instructional Material

rm

This command is used to delete one or more files from the

directory.

$rm [option] filename

$rm –i Asks the user if he wants to delete the file

mentioned.

$rm –r Recursively delete the entire contents of the

directory as well as the directory itself.

Process and status information commands

who

This command gives the details of who all have logged in to the

UNIX system currently.

$ who

who am i

This command tells us as to when we had logged in and the

system‘s name for the connection being used.

$who am i

date

This command displays the current date in different formats.

+%D mm/dd/yy +%w Day of the week

+%H Hr-00 to 23 +%a Abbr.Weekday

+%M Min-00 to 59 +%h Abbr.Month

+%S Sec-00 to 59 +%r Time in AM/PM

+%T HH:MM:SS +%y Last two digits of the year

echo

This command will display the text typed from the keyboard.

$echo

Eg : $echo Have a nice day

O/p : Have a nice day

Text related commands

head

This command displays the initial part of the file. By default it

displays first ten lines of the file.

$head [-count] [filename]

tail

This command displays the later part of the file. By default it

displays last ten lines of the file.

$tail [-count] [filename]

wc

This command is used to count the number of lines, words or

characters in a file.

43

Basic Unix Commands

NOTES

Self- Instructional Material

$wc [-lwc] filename

find

The find command is used to locate files in a directory and in a

subdirectory.

The –name option

This lists out the specific files in all directories beginning from the

named directory. Wild cards can be used.

The –type option

This option is used to identify whether the name of files specified

are ordinary files or directory files. If the name is a directory then

use "-type d " and if it is a file then use ―-type f‖.

The –mtime option

This option will allow us to find that file which has been modified

before or after a specified time. The various options available are –

mtime n(on a particular day),-mtime +n(before a particular day),-

mtime –n(after a particular day)

The –exec option

This option is used to execute some commands on the files that are

found by the find command.

 File Permission commands

chmod

Changes the file/directory permission mode: $ chmod 777 file1

Gives full permission to owner, group and others

$ chmod o-w file1

Removes write permission for others.

 Useful Commands:

exit - Ends your work on the UNIX system.

44

History of Unix Shells

NOTES

Self- Instructional Material

EX. NO: 8 HISTORY OF UNIX SHELLS

The independence of the shell from the UNIX operating system per se has

led to the development of dozens of shells throughout UNIX history—

although only a few have achieved widespread use.

The first major shell was the Bourne shell (named after its inventor, Steven

Bourne); it was included in the first popular version of UNIX, Version 7,

starting in 1979. The Bourne shell is known on the system as sh. Although

UNIX has gone through many, many changes, the Bourne shell is still

popular and essentially unchanged. Several UNIX utilities and

administration features depend on it.

The first widely used alternative shell was the C shell, or csh. This was

written by Bill Joy at the University of California at Berkeley as part of the

Berkeley Software Distribution (BSD) version of UNIX that came out a

couple of years after Version 7. It‘s included in most recent UNIX

versions.

The C shell gets its name from the resemblance of its commands to

statements in the C Programming Language, which makes the shell easier

for programmers on UNIX systems to learn. It supports a number of

operating system features (e.g., job control) that were unique to BSD

UNIX but by now have migrated to most other modern versions. It also has

a few important features (e.g., aliases) that make it easier to use in general.

In recent years a number of other shells have become popular. The most

notable of these is the Korn shell. This shell is a commercial product that

incorporates the best features of the Bourne and C shells, plus many

features of its own. The Korn shell is similar to bash in most respects; both

have an abundance of features that make them easy to work with. The

advantage ofbash is that it is free

THE BOURNE AGAIN SHELL
The Bourne Again shell (named in punning tribute to Steve Bourne‘s shell)

was created for use in the GNU project. The GNU project was started by

Richard Stallman of the Free Software Foundation (FSF) for the purpose of

creating a UNIX-compatible operating system and replacing all of the

commercial UNIX utilities with freely distributable ones. GNU embodies

not only new software utilities, but a new distribution concept: the copy

left. Copulated software may be freely distributed so long as no restrictions

are placed on further distribution (for example, the source code must be

made freely available).

Bash, intended to be the standard shell for the GNU system, was officially

―born‖ on Sunday, January 10, 1988. Brian Fox wrote the original versions

of bash and read line and continued to improve the shell up until 1993.

Early in 1989 he was joined by Chet Ramey, who was responsible for

numerous bug fixes and the inclusion of many useful features. Chet Ramey

is now the official maintainer of bash and continues to make further

enhancements.

45

History Of Unix Shells

NOTES

Self- Instructional Material

In keeping with the GNU principles, all versions of bash since 0.99 have

been freely available from the FSF. Bash has found its way onto every

major version of UNIX and is rapidly becoming the most popular Bourne

shell derivative. It is the standard shell included with Linux, a widely used

free UNIX operating system.

In 1995 Chet Ramey began working on a major new release, 2.0, which

was released to the public for the first time on December 23,

1996. Bash 2.0 adds a range of new features to the old release and brings

the shell into better compliance with various standards.

This book describes the latest release of bash 2.0 (version 2.01, dated June

1997). It is applicable to all previous releases of bash. Any features of the

current release that are different in, or missing from, previous releases will

be noted in the text.

FEATURES OF BASH

Although the Bourne shell is still known as the ―standard‖ shell, bash is

becoming increasingly popular. In addition to its Bourne shell

compatibility, it includes the best features of the C and Korn shells as well

as several advantages of its own.

Bash‘s command-line editing modes are the features that tend to attract

people to it first. With command-line editing, it‘s much easier to go back

and fix mistakes or modify previous commands than it is with the C shell‘s

history mechanism—and the Bourne shell doesn‘t let you do this at all.

46

Deciding On A Shell

NOTES

Self- Instructional Material

Ex. No: 9 DECIDING ON A SHELL

A shell is a program that provides the traditional, text-only user interface

for Unix-like operating systems. Its primary function is to read commands

that are typed into a console (i.e., an all-text display mode) or terminal

window (an all-text window) in a GUI (graphical user interface) and then

execute (i.e., run) them.

Although bash, the default shell on many Debian based Linux distros like

Ubuntu and Linux Mint, is highly versatile and can be used for almost

anything, each shell has its own characteristics and there might be

situations in which it is preferable to use some other shell, such as ash, csh,

ksh, sh or zsh. For example, the csh shell has a syntax that resembles that

of the highly popular C programming language, and thus it is sometimes

preferred by programmers

How to find out what shell you are running

type at prompt:

 $ echo $SHELL

Here is what you may see:

/bin/sh : This is the Bourne shell.

/bin/ksh93 : This is the Korn shell.

/bin/bash : This is the Bash shell.

/bin/zsh : This is the Z shell.

/bin/csh : This is the C Shell.

 /bin/tcsh : This is the TC Shell.

Valid login Shells

$ vi /etc/shells

Change your shell

The UNIX shell is most people's main access to the UNIX operating

system and as such any improvement to it can result in considerably more

effective use of the system, and may even allow you to do things you

couldn't do before. The primary improvement most of the new generation

shells give you is increased speed. They require fewer key strokes to get

the same results due to their completion features, they give you more

information (e.g. showing your directory in your prompt, showing which

47

Deciding On A Shell

NOTES

Self- Instructional Material

files it would complete) and they cover some of the more annoying features

of UNIX, such as not going back up symbolic links to directories.

How to Change Shells

There are two different methods of changing shells.

1. Temporarily changing your shell for the session you are in.

2. Changing your login shell which is permanent.

Temporarily changing your shell for the session you are in

 Use csh as again an example. I will assume you already have csh installed

on your system. All you need to do is type the command below into your

terminal.

 $ csh

There are a few ways to verify this. This first comes from above.

 $ ps

If you have csh installed on your system you will see something similar to

this.

PID TTY TIME CMD

13964 pts/0 00:00:00 bash

22450 pts/0 00:00:00 csh

22451 pts/0 00:00:00 ps

Upon changing shells, a different command prompt (i.e., the short text

message at the left of each command line) may be shown, depending on the

previous and new shells. For example, if the original shell were bash and

the new shell is sh, the command prompt would change for a user George

from something like [george@localhost george]$ to something like sh-

2.05b$.

To return to the original shell, or any other one for that matter, all that is

necessary is to just type its name and then press the ENTER key. Thus, for

example, to return to the bash shell from the sh shell (or from any other

shell), all that is required is to type the word bash or exit.

Changing your login shell which is permanent

Use a program called chsh. There is a interactive method and non-

interactive method. Type this into your terminal.

INTERACTIVE METHOD

 $ chsh

This results in a brief dialog in which the user is prompted first for its

password and then for the full path of the desired new shell.

In particular, it is important to first test the shell temporarily in the current

session and then to make certain that a valid shell name is being entered

when making the permanent change.

48

Deciding On A Shell

NOTES

Self- Instructional Material

NON-INTERACTIVE METHOD

 Use csh as again an example.

 $ chsh -s /bin/csh

The -s sets it for you without having to go into the editor to do it.

49

Shell Command Files

NOTES

Self- Instructional Material

Block 4

Ex. No: 10 SHELL COMMAND FILES

A Kernel is at the nucleus of a computer. It makes the communication

between the hardware and software possible. While the Kernel is the

innermost part of an operating system, a shell is the outermost one. A shell

in a Linux operating system takes input from you in the form of

commands, processes it, and then gives an output. It is the interface

through which a user works on the programs, commands, and scripts. A

shell is accessed by a terminal which runs it.

When you run the terminal, the Shell issues a command prompt (usually

$), where you can type your input, which is then executed when you hit the

Enter key. The output or the result is thereafter displayed on the terminal.

The Shell wraps around the delicate interior of an Operating system

protecting it from accidental damage. Hence the name Shell.

 A Shell is a program whose primary purpose is to read commands

and run other programs.

 The Shell‘s main advantages are its high action –to-keystroke ratio,

its support for automating repetitive tasks and its capacity to access

networked machines.

 The Shell‘s main disadvantage are its primarily textual nature and

how cryptic its commands and operation can be.

Navigation and file Directory

 The file system is responsible for managing information on the

disk.

 Information is stored in files, which are stored in directories

(folders).

 Directories can also store other directories, which forms a directory

tree

 cd path changes the current working directory

 Is path prints a listing of a specific file or directory; ls on its own

lists the current working directory

 pwd prints the user‘s current working directory.

 / on its own is the root directory of the whole file system.

 A relative path specifies a location starting from the current

location

 An absolute path specifies a location from the root of the file

system.

 Directory names in a path are separated with / on Unix, but \ on

Windows.

 .. means ‗the directory above the current one‘; . on its own means

‗the current directory‘

50

Shell Command Files

NOTES

Self- Instructional Material

Working with file and directory

• cp old new copies a file.

• mkdir path creates a new directory.

•mv old new moves (renames) a file or directory.

•rm path removes (deletes) a file.

•* matches zero or more characters in a filename, so *.txt matches all files

ending in .txt.

•? matches any single character in a filename, so ?.txt matches a.txt but not

any.txt.

•Use of the Control key may be described in many ways, including Ctrl-X,

Control-X, and ^X.

•The shell does not have a trash bin: once something is deleted, it‘s really

gone.

•Most files‘ names are something extension. The extension isn‘t required,

and doesn‘t guarantee anything, but is normally used to indicate the type of

data in the file.

•Depending on the type of work you do, you may need a more powerful

text editor than Nano.

Loops

• A for loop repeats commands once for everything in a list.

• Every for loop needs a variable to refer to the thing it is currently

operating on.

• Use $name to expand a variable (i.e., get its value). ${name} can also be

used.

• Do not use spaces, quotes, or wildcard characters such as ‗*‘ or ‗?‘ in

filenames, as it complicates variable expansion.

• Give files consistent names that are easy to match with wildcard patterns

to make it easy to select them for looping.

• Use the up-arrow key to scroll up through previous commands to edit and

repeat them.

• Use Ctrl-R to search through the previously entered commands.

• Use history to display recent commands, and ! number to repeat a

command by number.

Bourne Shell

The prompt for this shell is $ and its derivatives are listed below:

 POSIX shell also is known as sh

 Korn Shell also knew as sh

 Bourne Again SHell also knew as bash (most popular)

51

Bourne Shell Programming

NOTES

Self- Instructional Material

EX. NO: 11 BOURNE SHELL

PROGRAMMING

The shbang line

The "shbang" line is the very first line of the script and lets the kernel know

what shell will be interpreting the lines in the script. The shbang line

consists of a #! followed by the full pathname to the shell, and can be

followed by options to control the behavior of the shell.

Example
#!/bin/sh

Comments

Comments are descriptive material preceded by a # sign. They are in effect

until the end of a line and can be started anywhere on the line.

Example
this text is not
interpreted by the shell

Wildcards

There are some characters that are evaluated by the shell in a special way.

They are called shell metacharacters or "wildcards." These characters are

neither numbers nor letters. For example, the *, ?, and [] are used for

filename expansion. The <, >, 2>, >>, and | symbols are used for standard

I/O redirection and pipes. To prevent these characters from being

interpreted by the shell they must be quoted.

EXAMPLE

Filename expansion:

rm *; ls ??; cat file[1-3];

Quotes protect metacharacter:

echo "How are you?"

Displaying output

To print output to the screen, the echo command is used. Wildcards must

be escaped with either a backslash or matching quotes.

EXAMPLE

echo "What is your name?"

52

Bourne Shell Programming

NOTES

Self- Instructional Material

Local variables

Local variables are in scope for the current shell. When a script ends, they

are no longer available; i.e., they go out of scope. Local variables are set

and assigned values.

EXAMPLE

variable_name=value

name="John Doe"

x=5

Global variables

Global variables are called environment variables. They are set for the

currently running shell and any process spawned from that shell. They go

out of scope when the script ends.

EXAMPLE
VARIABLE_NAME=value
export VARIABLE_NAME
PATH=/bin:/usr/bin:.
export PATH

Extracting values from variables

To extract the value from variables, a dollar sign is used.

EXAMPLE
echo $variable_name
echo $name
echo $PATH

Reading user input

The read command takes a line of input from the user and assigns it to a

variable(s) on the right-hand side. The read command can accept muliple

variable names. Each variable will be assigned a word.

EXAMPLE
echo "What is your name?"
read name
read name1 name2 ...

Arguments (positional parameters)

Arguments can be passed to a script from the command line. Positional

parameters are used to receive their values from within the script.

EXAMPLE

At the command line:
$ scriptname arg1 arg2 arg3 ...

In a script:

53

Bourne Shell Programming

NOTES

Self- Instructional Material

echo $1 $2 $3 Positional parameters

echo $* All the positional paramters

echo $# The number of positional parameters

Arrays (positional parameters)

The Bourne shell does support an array, but a word list can be created by

using positional parameters. A list of words follows the built-in set

command, and the words are accessed by position. Up to nine positions are

allowed. The built-in shift command shifts off the first word on the left-

hand side of the list. The individual words are accessed by position values

starting at 1.

EXAMPLE

set word1 word2 word3

echo $1 $2 $3 Displays word1, word2, and word3

set apples peaches plums

shift Shifts off apples

echo $1 Displays first element of the list

echo $2 Displays second element of the list

echo $* Displays all elements of the list

Command substitution

To assign the output of a UNIX/Linux command to a variable, or use the

output of a command in a string, backquotes are used.

EXAMPLE
variable_name=`command`
echo $variable_name
now=`date`
echo $now
echo "Today is `date`"

Arithmetic

The Bourne shell does not support arithmetic. UNIX/Linux commands

must be used to perform calculations.

EXAMPLE

n=`expr 5 + 5`
echo $n

Operators

The Bourne shell uses the built-in test command operators to test numbers

and strings.

54

Bourne Shell Programming

NOTES

Self- Instructional Material

EXAMPLE

Equality:

= string

!= string

-eq number

-ne number

Logical:

-a and

-o or

! not

Relational:

-gt greater than

-ge greater than, equal to

-lt less than

-le less than, equal to

Loops

There are three types of loops: while, until and for.The while loop is

followed by a command or an expression enclosed in square brackets,

a do keyword, a block of statements, and terminated with

the done keyword. As long as the expression is true, the body of statements

between do and done will be executed.The until loop is just like

the while loop, except the body of the loop will be executed as long as the

expression is false.The for loop used to iterate through a list of words,

processing a word and then shifting it off, to process the next word. When

all words have been shifted from the list, it ends. The for loop is followed

by a variable name, the in keyword, and a list of words then a block of

statements, and terminates with the done keyword.

The loop control commands are break and continue.

EXAMPLE

while command

do

 block of statements

done

while [expression]

do

 block of statements

done

until command for variable in word1 word2 word3 ...

do do

 block of statements block of statements

done done

 until [expression]

do

 block of statements

done

55

Bourne Shell Programming

NOTES

Self- Instructional Material

The Bourne Shell Script

1 #!/bin/sh

2 # The Party Program––Invitations to friends from the "guest" file

 3 guestfile=/home/jody/ellie/shell/guests

 4 if [! –f "$guestfile"]

 5 then

 6 echo "`basename $guestfile` non–existent"

 7 exit 1

 8 fi

 9 PLACE="Sarotini's"; export PLACE

 10 Time=`date +%H`

 Time=`expr $Time + 1`

 11 set cheese crackers shrimp drinks "hot dogs" sandwiches

 12 for person in `cat $guestfile`

 do

 13 if [$person =~ root]

 then

 14 continue

 15 else

 16 # mail –v –s "Party" $person <<- FINIS

 17 cat <<-FINIS

 Hi ${person}! Please join me at $PLACE for a party!

 Meet me at $Time o'clock.

 I'll bring the ice cream. Would you please bring $1 and

 anything else you would like to eat? Let me know if you

 can make it. Hope to see you soon.

 Your pal,

 ellie@`hostname`

 FINIS

 18 shift

 19 if [$# –eq 0]

 then

 20 set cheese crackers shrimp drinks "hot dogs" sandwiches

 fi

 fi

 21 done

 echo "Bye..."

EXPLANATION

This line lets the kernel know that you are running a Bourne shell script.

This is a comment. It is ignored by the shell, but important for anyone

trying to understand what the script is doing.

The variable guestfile is set to the full pathname of a file called guests.

This line reads: If the file guests does not exist, then print to the screen

"guests nonexistent" and exit from the script.

56

Bourne Shell Programming

NOTES

Self- Instructional Material

The then is usually on a line by itself, or on the same line as the if

statement if it is preceded by a semicolon.

The UNIX basename command removes all but the filename in a search

path. Because the command is enclosed in backquotes, command

substitution will be performed and the output displayed by the echo

command.

If the file does not exist, the program will exit. An exit with a value of 1

indicates that there was a failure in the program.

The fi keyword marks the end of the block of if statements.

Variables are assigned the values for the place and time. PLACE is an

environment variable, because after it is set, it is exported.

The value in the Time variable is the result of command substitution; i.e.,

the output of the date +%H command (the current hour) will be assigned to

Time.

The list of foods to bring is assigned to special variables (positional

parameters) with the set command.

The for loop is entered. It loops through until each person listed in the

guest file has been processed.

If the variable person matches the name of the user root, loop control will

go to the top of the for loop and process the next person on the list. The

user root will not get an invitation.

The continue statement causes loop control to start at line 12, rather than

continuing to line 16.The blocks of statements under else are executed if

line 13 is not true.

The mail message is sent when this line is uncommented. It is a good idea

to comment this line until the program has been thoroughly debugged,

otherwise the e-mail will be sent to the same people every time the script is

tested.

57

Bourne Shell Programming

NOTES

Self- Instructional Material

The next statement, using the cat command with the here document, allows

the script to be tested by sending output to the screen that would normally

be sent through the mail when line 7 is uncommented. After a message has

been sent, the food list is shifted so that the next person will get the next

food on the list. If there are more people than foods, the food list will be

reset, ensuring that each person is assigned a food.

The value of $# is the number of positional parameters left. If that number

is 0, the food list is empty. The food list is reset. The done keyword marks

the end of the block of statements in the body of the for loop

58

SHELLS

PROGRAMMING ON

FILES

NOTES

Self- Instructional

Material

EX. NO: 12 SHELLS PROGRAMMING

ON FILES

Basic File Attributes - Read, Write and Execute

There are three basic attributes for plain file permissions: read, write, and

execute.

Read Permission of a file

If you have read permission of a file, you can see the contents. That means

you can

use more, cat, etc.

Write Permission of a file

If you have to write permission of a file, you can change the file. This

means you can

Add to a file, or overwrite a file. You can empty a file called "yourfile" by

copying

The empty (/dev/null) file on top of it

Cat /dev/null yourfile

Execute Permission of a file

If the file has execute permission, then you can ask the operating system to

run the file as if it were a program. If it's a binary file/program, you can

execute it like any other program.

If the file is a shell script, then the execute attribute says you can treat it as

if it were a program. To put it another way, you can create a file using your

favorite editor, add the execute attribute to it, and it "becomes" a program.

However, since a shell has to read the file, a shell script has to be readable

and executable. A compiled program does not need to be readable.

The basic permission characters, "r", "w", and "x"

r means read w means write, and x means execute.

Using chmod to change permissions

The chmod command is used to change permission. The simplest way to

use the chmod command is to add or subtract the permission to a file. A

simple plus or minus is used to add or subtract the permission.

You may want to prevent yourself from changing an important file.

Remove the write permission of the file "myfile" with the command chmod

-w myfile If you want to make file "myscript" executable, type chmod +x

myscript You can add or remove more than one of these attributes at a time

chmod -rwx file

chmod +wx file

59

Shells programming on files

NOTES

Self- Instructional Material

You can also use the "=" to set the permission to an exact combination.

This command removes the write and executes permission, while adding

the read permission:

chmod =r myfile

Note that you can change permissions of files you own. That is, you can

remove all permissions of a file, and then add them back again. You can

make a file "read only" to protect it. However, making a file read only does

not prevent you from deleting the file. That's because the file is in a

directory, and directories also have read, write and execute permission.

And the rules are different.

Basic Directory Attributes - Read, Write and Search

Directories use these same permissions, but they have a different meaning.

Yes, very different meanings.

Read permission on a directory

If a directory has read permission, you can see what files are in the

directory. That is, you can do an "ls" command and see the files inside the

directory. However, read permission of a directory does not mean you can

read the contents of files in the directory.

Write permission on a directory

Write permission means you can add a new file to the directory. It also

means you can rename or move files in the directory.

Execute permission on a directory

Execute allows you to use the directory name when accessing files inside

that directory. The "x" permission means the directory is "searchable"

when searching for executables. If it's a program, you can execute the

program.

File Test Operators

There are following operators to test various properties associated with a

Unix file. Assume a variable file holds an existing file name "test" whose

size is 100 bytes and has read, write and execute permission on:

60

SHELLS

PROGRAMMING ON

FILES

NOTES

Self- Instructional

Material

Operator Description Example

-b file Checks if file is a block special file if yes then

condition becomes true.

[-b $file] is

false.

-c file Checks if file is a character special file if yes then

condition becomes true.

[-b $file] is

false.

-d file Check if file is a directory if yes then condition

becomes true.

[-d $file] is

not true.

-f file Check if file is an ordinary file as opposed to a

directory or special file if yes then condition

becomes true.

[-f $file] is

true.

g file Checks if file has its set group ID (SGID) bit set if

yes then condition becomes true.

[-g $file] is

false.

-k file Checks if file has its sticky bit set if yes then

condition becomes true.

[-k $file] is

false.

-p file Checks if file is a named pipe if yes then condition

becomes true.

[-p $file] is

false.

-t file Checks if file descriptor is open and associated

with a terminal if yes then condition becomes true.

[-t $file] is

false.

-u file Checks if file has its set user id (SUID) bit set if

yes then condition becomes true.

[-u $file] is

false.

-r file Checks if file is readable if yes then condition

becomes true.

[-r $file] is

true.

-w file Check if file is writable if yes then condition

becomes true.

[-w $file] is

true.

-x file Check if file is execute if yes then condition

becomes true.

[-x $file] is

true.

-s file Check if file has size greater than 0 if yes then

condition becomes true.

[-s $file] is

true.

-e file Check if file exists. Is true even if file is a

directory but exists.

[-e $file] is

true.

Example:

#!/bin/sh

file="/home /jnec /test.sh"

if [-r $file]

then

 echo "File has read access"

else

 echo "File does not have read access"

fi

if [-w $file]

then

 echo "File has write permission"

else

 echo "File does not have write permission"

fi

if [-x $file]

then

61

Shells programming on files

NOTES

Self- Instructional Material

 echo "File has execute permission"

else

 echo "File does not have execute permission"

fi

if [-f $file]

then

15

 echo "File is an ordinary file"

else

 echo "This is sepcial file"

fi

if [-d $file]

then

 echo "File is a directory"

else

 echo "This is not a directory"

fi

if [-s $file]

then

 echo "File size is zero"

else

 echo "File size is not zero"

fi

if [-e $file]

then

 echo "File exists"

else

 echo "File does not exist"

fi

62

Menu Driven File Handling

NOTES

Self- Instructional Material

BLOCK 5

EX. NO 13 MENU DRIVEN FILE

HANDLING

There is more than one method to create a menu within a shell script.

Using select offers an easy way to create menus and modify them as

needed. Before we use select, to show you an alternative method of

implementing a menu in a shell script using an infinite while loop, case

statement and a bunch of echo and read statements.

Problem Statement

Write a menu driven program in C to add, display, search, update and

delete the student record

Program

#include<stdio.h>

 #include<conio.h>

 #include<process.h>

 #include<stdio.h>

 #include<string.h>

 #include<process.h>

 #include<conio.h>

 void main()

 {

 FILE *fp, *ft;

 char another,choice;

 clrscr();

 struct Student

 {

 int roll;

 char name[40];

 int age;

 };

 struct Student stu;

 char Studentname[40] ;

 char found='n';

 long int recsize ;

63

Menu driven file handling

NOTES

Self- Instructional Material

 int roll;

 fp = fopen ("E:\\Student.DAT", "rb+") ;

 if (fp == NULL)

 {

 fp = fopen ("E:\\Student.DAT", "wb+") ;

 if (fp == NULL)

 {

 puts ("Cannot open file") ;

 exit(0) ;

 }

 }

 recsize = sizeof (stu) ;

 while (1)

 {

 clrscr() ;

 gotoxy (30, 6) ;

 printf ("1. Add Records") ;

 gotoxy (30, 8) ;

 printf ("2. List Records") ;

 gotoxy (30, 10) ;

 printf ("3. Search Records") ;

 gotoxy (30, 12) ;

 printf ("4. Modify Records") ;

 gotoxy (30, 14) ;

 printf ("5. Delete Records") ;

 gotoxy (30, 16) ;

 printf ("6. Exit") ;

 gotoxy (30, 18) ;

 printf ("Your choice : ") ;

 fflush (stdin) ;

 choice = getche();

 switch(choice)

 {

 case '1' :

 fseek (fp, 0 , SEEK_END) ;

 another = 'Y' ;

 while (another == 'Y' || another == 'y')

 {

64

Menu Driven File Handling

NOTES

Self- Instructional Material

 clrscr();

 printf ("\n\tEnter Roll : ") ;

 scanf ("%d",&stu.roll);

 printf ("\n\tEnter Name : ") ;

 scanf ("%s",&stu.name);

 printf ("\n\tEnter Age : ") ;

 scanf ("%d",&stu.age);

 fwrite (&stu, recsize, 1, fp) ;

 printf ("\n\tAdd another Record (Y/N) ") ;

 fflush (stdin) ;

 another = getche() ;

 }

 break ;

 case '2' :

 rewind (fp) ;

 clrscr();

 printf ("\n\tRoll\tName\t\tAge");

 while (fread (&stu, recsize, 1, fp) == 1)

 printf ("\n\t%d\t%s\t\t%d", stu.roll, stu.name, stu.age);

 printf("\n\n\n\tPRESS ANY KEY TO EXIT.......");

 getch();

 break ;

 case '3' :

 rewind (fp) ;

 clrscr();

 printf("\nEnter Roll for Search : ");

 scanf("%d",&roll);

 while (fread (&stu, recsize, 1, fp) == 1)

 {

 if(roll == stu.roll)

 {

 printf ("\n\tRoll\tName\t\tAge");

 printf ("\n\t%d\t%s\t\t%d", stu.roll, stu.name,

stu.age);

65

Menu driven file handling

NOTES

Self- Instructional Material

 found='y';

 break;

 }

 }

 if(found=='n')

 printf("\n\n\n\tNo Match Found.....");

 printf("\n\n\n\tPRESS ANY KEY TO EXIT.......");

 getch();

 break ;

 case '4' :

 rewind (fp) ;

 clrscr();

 printf("\nEnter Roll for Modify : ");

 scanf("%d",&roll);

 while (fread (&stu, recsize, 1, fp) == 1)

 {

 if (roll == stu.roll)

 {

 printf ("\n\tEnter New Roll : ") ;

 scanf ("%d",&stu.roll);

 printf ("\n\tEnter New Name : ") ;

 scanf ("%s",&stu.name);

 printf ("\n\tEnter New Age : ") ;

 scanf ("%d",&stu.age);

 fseek (fp, - recsize, SEEK_CUR) ;

 fwrite (&stu, recsize, 1, fp) ;

 printf ("\nData Updated : ") ;

 break ;

66

Menu Driven File Handling

NOTES

Self- Instructional Material

 }

 }

 printf("\n\n\n\tPRESS ANY KEY TO EXIT.......");

 getch();

 break ;

 case '5' :

 another = 'Y' ;

 clrscr();

 printf ("\nEnter Roll to Delete : ") ;

 scanf ("%d",&roll) ;

 ft = fopen ("E:\\temp.DAT", "w") ;

 rewind (fp) ;

 while (fread (&stu, recsize, 1, fp) == 1)

 {

 if (roll != stu.roll)

 fwrite (&stu, recsize, 1, ft) ;

 }

 fclose (fp) ;

 fclose (ft) ;

 remove ("E:\\Student.DAT") ;

 rename ("E:\\temp.DAT", "E:\\Student.DAT") ;

 fp = fopen ("E:\\Student.DAT", "rb+") ;

 printf("\n\n\n\tPRESS ANY KEY TO EXIT.......");

 getch();

 break ;

 case '6' :

 fclose (fp) ;

 exit(0) ;

 }

 }

}

67

Menu Driven Shell

programming

NOTES

Self- Instructional Material

Ex.No14 Menu Driven Shell

Programming

Write a script to make Following File and Directory

Management Operations menu based

a] Display Current dirctory

b] List Directory

c] Make Directory

d] Change Directory

e] Copy A File

f] Rename A File

G] Delete A File

H] Edit a file

echo "\t\t\tMenu\n

 1] Display Current dirctory\n

 2] List Directory\n

 3] Make Directory\n

 4] Change Directory\n

 5] Copy A File\n

 6] Rename A File\n

 7] Delete A File\n

 8] Edit a file\n

 Enter Your Choice:- \c"

 read choice

case"$choice"in

 1) pwd ;;

 2) ls ;;

 3) echo "Enter the Name Of Directory :-\c"

 read dir

 if [-z $dir]; then

 echo "you have not enter the dir"elseif [! -e $dir]; then

 mkdir $dir

 else

 echo "Dir Already Exists"if;;

 4) echo "Enter the Name Of Directory :-\c"

 read dir

 if [-z $dir]; then

 echo "you have not enter the dir"elseif [! -e $dir];then

 echo "Dir Not Found"else

 cd $dir

 if;;

 5) echo "Enter Soures File:-\c"

 read sfile

68

Menu Driven Shell

programming

NOTES

Self- Instructional Material

 if [-z $sfile];then

 Echo "Enter the Destination file"

 read dfile

 if [-z $dfile];then

 cp -i $sfile $dfiile

 else

 echo "You have not Enter Destination"ifelse

 echo "You have not entered Sorce File"if ;;

 6)echo "Enter Soures File:-\c"

 read sfile

 if [-z $sfile];then

 Echo "Enter the Destination file"

 read dfile

 if [-z $dfile];then

 mv -i $sfile $dfiile

 else

 echo "You have not Enter Destination"ifelse

 echo "You have not entered Sorce File"if ;;

 7)echo "Enter the File"

 read delfile

 if [-z $delfile] ; then

 echo "you have not Entered File"elseif [! -e $delfile]

 echo "File Does not Exist"else

 echo "Confirm Delete [y/n] :- \c"

 read delans

 if [$delans -e y -o delans -e Y];then

 rm $delfile

 ifif;;

 8)exit

esac

UNIX SHELL PROGRAMMING

MODEL LAB EXCERCISES

UNIX SHELL PROGRAMMING

MODEL LAB EXCERCISES

SUM OF N GIVEN NUMBERS

AIM

To write a shell script to find the sum of n numbers.

ALGORITHM

Step 1: Start the program

Step 2: Enter the value of n

Step 3: Declare the variables of i and sum and both are initialized to zero.

Step 4: Perform the addition of n numbers using while loop

Step 5: Print the sum.

 Step 6 : Stop the program

Program

echo "Sum of n natural numbers \n” echo "Enter the value of n "

read n i = 0

sum = 0 while[$i –lt $n] do

sum=‟expr $sum + expr $i‟ i = „expr $i + 1‟

done

echo "Sum of n natural numbers are : $sum”

OUTPUT

$ sh sum.sh

Sum of n natural numbers

Enter the value of n : 3

Sum of n natural numbers are : 6

Result:

Thus, the shell script to find the sum of n natural numbers is entered and its output

was verified.

SWAP TWO GIVEN NUMBERS

AIM

To write Unix shell program to swap two given numbers

ALGORITHM

1. Start the program.

2. Read the variables a, b.

3. Interchange the values of a and b using another temporary variable c

as follows:

 c = a a = b b = c

4. Print the a and b.

5. Stop the program.

Program

echo “swapping using temporary variable” echo “enter a”

read a

echo “enter b” read b

c=$a a=$b b=$c

echo “after swapping” echo “$a”

echo “$b”

OUTPUT

Enter a 10

Enter b 20

After swapping 20 10

Result:

Thus, the shell script to swap two numbers is entered and its output was verified.

LEAP YEAR CHECKING

AIM

To write a shell program to check whether the given year is leap year or not.

ALGORITHM

1. Start the program.

2. Read the year.

3. Check whether year%4,year%100,year%400 is zero.

4. If zero then print year is leap year.

5. Else print year is not leap year.

6. Stop the program.

Program

echo "Finding Leap Year" echo "enter any year" read y

a=`expr $y % 4` b=`expr $y % 100` c=`expr $y % 400`

if [$a -eq 0 -a $b -ne 0 -o $c -eq 0] then

echo "$y is a leap year " else

echo "$y is not a leap year " fi

OUTPUT

Enter a year:

2000

Year is leap year

Result:

Thus, the shell script to check whether the given year is leap year or not is entered

and its output was verified.

 FINDING FACTORIAL

AIM

 To Write shell program to find the factorial of given N value.

ALGORITHM

1. Start the program.

2. Read the number as n.

3. For every iteration until n<1 compute f=f*n.

4. Print the factorial of the given number as f.

5. Stop the program.

Program

echo “enter a positive number” read n

f=1

until [$n -lt 1] do

f=`expr $f * $n` n=`expr $n - 1` done

echo “factorial is $f”

OUTPUT

Enter positive number 4

Factorial is 24

Result:

 Thus, the shell script to find the factorial of a given number is entered and its output

was verified.

SUM OF DIGITS OF A GIVEN NUMBER

AIM:

To write a shell program for finding the sum of digits of a given number.

 Sum = 1 + 2 + 3 + 4 +….+ N

ALGORITHM

1. Start the program.

2. Read the number as n.

3. Initialise sum=0

4. For every iteration n> 0

compute rem=n%10

n=n/10 sum=sum + rem

5. Print the sum of digits of the given number as sum.

6. Stop the program.

Program

echo “enter the number” read n

sum=0

while [$n -gt 0] do

rem=`expr $n % 10` n=`expr $n / 10` sum=`expr $sum + $rem` done

echo “sum of digits is:$sum”

OUTPUT

Enter a number:1234 Sum of digits is:10

Result:

Thus, the shell script to find the sum the digits of a given number is entered and its

output was verified.

GREATEST AMONG THREE NUMBERS

 AIM:

To write a shell program for finding the greatest among three numbers.

ALGORITHM

1. Start the program.

2. Read the three numbers a, b, c.

3. Check whether a is greater than b and c.

4. If yes then print a is big.

5. Else check whether b is greater than c.

6. If yes then print b is big.

7. Else print c is big.

8. Stop the program.

Program

echo “enter a b c” read a

read b read c

if [$a -gt $b] && [$a -gt $c] then

echo “$a big”

elif [$b -gt $c] then

echo “$b big” else

echo “$c big”

OUTPUT

Enter a b c 10 20 30

C big

Result:

Thus, the shell script to find the sum the digits of a given number is entered and its

output was verified.

’

B.C.A.
101 54

UNIX & SHELL PROGRAMMING LAB
V - Semester

ALAGAPPA UNIVERSITY
[Accredited with A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

	Third Year – Fifth Semester
	SYLLABUS

